
MOF-based Metamodeling for the XTT Knowledge Representation
Krzysztof Kluza, Grzegorz J. Nalepa

Institute of Automatics,
AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

Institute of Physics,
Jan Kochanowski University

ul. Żeromskiego 5, 25-369, Kielce, Poland
kluza@agh.edu.pl, gjn@agh.edu.pl

Abstract. This paper concerns the metamod-
el of the XTT rule-based knowledge represen-
tation. XTT is a knowledge representation and
design method which aims at combining deci-
sion trees and decision tables. As the pure XTT
method required dedicated tools to design sys-
tems, the UML representation has been devel-
oped. The abstract syntax of UML is defined
by the UML metamodel. This paper introduces
the metamodel proposal for the developed UML
representation.

1. Introduction Nowadays, business require-
ments change very fast and the product lifecycle
is shortening. Moreover, the complexity of de-
veloping applications is continually growing. To
deal with the complex software production, visu-
al modeling methods have been developed.

Visual modeling is already an essential part
of a software engineering process [16]. In soft-
ware modeling the Unified Modeling Language
(UML) [15], a graphical modeling language, has
become the dominant graphical notation.

UML can help to enable the model-driven
approach to system development [12]. This can
be an evolutionary step in the software develop-
ment industry. Although there are no restrictions
to use only UML models, UML has some great
strengths, such as:

• providing a metamodel,
• allowing to define model extensions,
• allowing to raise the modeling abstraction.

In the model-based approach metamodels play
an increasingly important role. Metamodeling is

to be an essential foundation for Model Driven
Development (MDD) [1]. However, there is still
little consensus on the precise form it should take
in the process.

The general problem considered in the arti-
cle is modeling and metamodeling in the software
engineering process. This article discusses UML
models and MOF metamodels, provides the de-
scription of the Hybrid Knowledge Engineering
(HeKatE) methodology and the UML models of
the XTT Knowledge Representation in HeKatE
process. The specific problem presented in the ar-
ticle is the metamodel for the UML representation
of the XTT.

The research presented here is the continuation
of work previously carried out within [9, 8].

2. Models and Metamodels

2.1. Model Modeling plays a crucial role in
a system design process. The feature of a model is
that it can be used to produce things existing in re-
ality, e.g. a model describing a system can be used
to produce similar systems [6]. Thus, a model is
an abstraction of the reality which can be treated
as a pattern or template. To model is to represent
the real world’s features, such as objects, systems
or concepts [17].

Models are described in a particular language.
In UML, a model is a set of diagrams [6]. Such di-
agrams describe the system (or only a part of it).
The complete system can be described by a num-
ber of models. Each one describes the system
from a different angle than another, often on an-
other level of abstraction.

2.2. Metamodel A language can be defined by
the description of its syntax and semantics. To de-
scribe the semantics often a textual description is
used. The syntax, in turn, is defined rather in other
ways, e.g. grammar.

Visual languages, like UML, have a graphi-
cal syntax. Therefore, they require a visual mech-
anism for defining their syntax [6]. Although
the syntax of the visual language can be described
by some complex graph grammar, the easier way
is to use a metamodel, especially in the case of
UML where the metamodel is already provided.
UML provides also the notation, which is sup-
ported by the UML tools.

Not every syntactical rule can be explicitly ex-
pressed in the metamodel, e.g. the rule specify-
ing the order of the particular artifacts. However,
such a rule can be easily expressed in the con-
straint language such as OCL [14].

2.3. Approaches to Metamodeling Two ap-
proaches of creating a metamodel can be distin-
guished. The first approach consists in creating
a new metamodel conforming to MOF.

The second one is based on redefining and
adjusting the UML metamodel without leaving
the standard of UML. This can use mechanisms
extending UML metamodel such as:

• the UML profiles which provide a mechanism
for customizing the metamodel for particular
domains or platforms [3], using e.g. stereo-
types, or

• constraints which can provide a detailed spec-
ification, written as Object Constraints Lan-
guage (OCL) [14] expressions which impose
on the model. OCL is a formal language devel-
oped in order to avoid ambiguous constraint
expressions.

2.4. MOF metamodel Meta Object Facility
(MOF) [13] is an OMG standard that defines
the language to define modeling languages. It is
a universal way of describing modeling con-
structs [5]. MOF is defined using MOF itself.
So, MOF is at the highest abstraction level [4].
A fragment of the MOF metamodel is shown in
Fig. 1, see [2].

Fig. 1. A fragment of the MOF metamodel abstract
syntax (for MOF 1.4) [2]

Since the MOF syntax is based on UML class
diagrams, artifacts can be modeled as classes and
their properties as attributes of the class. The re-
lationships between artifacts can be modeled as
associations between classes representing these
artifacts. Furthermore, to increase precision of
the metamodel one can use OCL expressions [5].

OMG defined a four-layered architecture for
MOF: a meta-metamodel layer, a metamodel
layer, a model layer, and an information layer.
Fig. 2 captures relationships between these lay-
ers [1].

Fig. 2. Traditional OMG Modeling Infrastructure [1]

The MOF meta-metamodel is an abstract lan-
guage used to define metamodels. For instance,
to define the UML metamodel. A metamodel can
be described as an instance of the MOF meta-
metamodel. It is a language used to define mod-
els. Models, in turn, are comprised of metadata
that describe data in the information layer. Each
element in a certain layer describes elements in
the layer below.

3. MOF-based Metamodeling for the XTT
Knowledge Representation

3.1. XTT EXtended Tabular Trees (XTT) [7]
is a hybrid knowledge representation and design
method aims at combining decision trees and de-
cision tables. It is developed in HeKatE research
project (hekate.ia.agh.edu.pl) that re-
gards Software Engineering based on Knowledge
Engineering.

XTT uses a hierarchical visual representation
of the decision tables linked into a tree-like struc-
ture. It is used to model, represent, and store
the business logic of designed systems. Moreover,
the XTT method is supported by a Prolog-based
interpretation.

XTT method requires dedicated tools to de-
sign systems. However, in Software Engineer-
ing UML is de facto the standard for model-
ing software applications. The UML representa-
tion of XTT have been proposed to provide users
a wider choice of tools and integrate XTT method
with the most popular visual notation. As XTT
methodology is a knowledge-based approach and
uses a declarative model specification, UML is al-
so a declarative language, so this provides com-
patibility for translations.

The HeKatE process consist of three design
phases:
1. Conceptual design. Conceptual design is

the most abstract phase. During this phase
both system attributes and their functional
relationships are identified. This phase uses
ARD (Attribute-Relationship) [11] diagrams
as the modeling tool. ARD method uses a vi-
sual representation to specify relationships be-
tween attributes. It allows to design the logical
XTT structure.

2. Logical design. In this phase system structure
is represented as a XTT hierarchy. The prelim-
inary model of XTT can be obtained as a result
of the previous phase. This phase uses the XTT
representation as the design tool. The logical
design phase allows on-line analysis, verifi-
cation, and also revision and optimization (if
necessary) of the designed system properties,
using Prolog.

3. Physical design. During the physical design
phase the preliminary Prolog-based imple-
mentation of the system is generated from

the XTT model. The generated code can be
compiled, executed and debugged.
Fig. 3 shows this top-down hierarchical design

methodology of the HeKatE project, Knowledge
Representation Diagrams for each phase and cor-
responding UML-based Knowledge Representa-
tions which are described in next section.

3.2. UML-based Knowledge Representation
for XTT The models of ARD and XTT use
the subsets of UML artifacts and their relation-
ships. The reason of this is to be able to use exist-
ing UML tools.

The key assumption of ARD design is that
the attributes are functionally dependent. ARD al-
lows for specification of dependencies using a vi-
sual representation [11]. The UML model of ARD
is very similar to the original ARD. The represen-
tation uses class diagrams and stereotyped depen-
dencies from Standard Profile L2 to convey ARD.

As the decision tables of XTT are processed
sequentially, their representation uses UML activ-
ity diagrams, which shows not so much the struc-
ture of the system, but its behavior. In general, ac-
tivity diagrams are related to flow diagrams and
can illustrate the activities taking place in the sys-
tem. Every XTT attribute is represented by the
Activity Parameter. There are input and output
parameters. The whole Activity acts like a log-
ical gates system, where Merge and Join Nodes
function as logical or and and gates. Values of
attributes are checked in guard conditions by the
Decision Nodes, and values of output parameters
are set by Actions. Although the model is not sim-
ilar to the original XTT, it is intuitive when know-
ing the logical gates.

3.3. MOF Metamodel of the UML Model of
XTT The UML representation of ARD and
XTT uses the second approach of creating a meta-
model – redefining and adjusting the UML meta-
model. Therefore, the proposed metamodel of
XTT is a part of the UML metamodel.

Fig. 4 shows the metamodel of the UML repre-
sentation for ARD diagrams. The representation
is very simple and uses only UML classes (with
or without attributes) and the «derive» dependen-
cies. The presented metamodel itself is not so pre-

Fig. 3. HeKatE Methodology Phases and Knowledge Representation

cisely stated as required by the models. UML di-
agrams are typically not detailed enough to pro-
vide for every aspect of a specification. In partic-
ular, not every relevant aspect can be expressed in
pure UML. To ensure the accuracy of the models,
some constraints for the metamodel are provided,
e.g. every ARD simple property should have only
one attribute (that means that every class which is
not abstract has no attribute). This constraint can
be written in OCL as follows:
context Class inv:
self.isAbstract = false implies
self.ownedAttribute->size() = 0

As in the case of ARD, the XTT model uses
a subset of UML artifacts and their relationships
as well. There are two model levels of XTT:

• the lower level model conforming to a single
XTT table, and

• the higher level model conforming to a tree of
XTT tables.

As both these models are based on UML Activity
Diagrams, their metamodel is created as a subset
of UML Activity Diagram metamodel [15] with
OCL constraints imposed. The proposed meta-
model is shown in Fig. 5.

As can be observed in the metamodel, it also
generates models which do not match to the XTT

models. It is worth noting that the problem of
this metamodel is that it does not require the order
of nodes, despite the fact that the required order of
nodes in XTT models is known. For example, the
order for XTT model at the lower abstraction lev-
el is as follows (nodes which can occur optional
are in brackets):
Activity Parameter Node → Decision

Node → (Fork Node) → Join Node1

→ Fork Node2 → (Merge Node) →
Action → (Merge Node) → Activity

Parameter Node.

The solution for the enforcement of the or-
der of nodes is to use constraints expressions in
OCL, e.g. the constraints for the activity parame-
ter nodes can be described in natural language:
• Incoming edge to every parameter node goes

from either a merge node or an action.
• Outgoing edge from every parameter node

goes to a decision node.
These two rules can be written in OCL as follows:
context ActivityParameterNode inv:

1 Element occurs when there is more than one input ac-
tivity parameter node.

2 Element occurs when there is more than one output
activity parameter node or there is the transition parameter
node (which enables the transition to different tables).

Fig. 4. Metamodel for ARD diagrams

Fig. 5. Metamodel for XTT diagrams

self.incoming->forAll(edge |
edge.source.oclIsTypeOf(MergeNode)
xor edge.source.oclIsKindOf(Action)

)
self.outgoing->forAll(edge |
edge.target.

oclIsTypeOf(DecisionNode))

4. Summary In the paper the research in
the field of knowledge and software engineer-
ing is presented. Metamodeling is considered

as a challenging field for the future software
development. Moreover, the OMG introduced
their own MOF standard of defining metamod-
els. Therefore, the research presented in this paper
aims at creating of MOF metamodels.

The original contribution of the paper consists
in the creation of the metamodel for the UML rep-
resentation of the XTT rule-based knowledge rep-
resentation. The paper presents an approach based

on redefining and adjusting the UML metamodel.
In this approach, the model is based on the orig-
inal UML syntax and the metamodel is a subset
of UML metamodel. In addition, some detailed
specification is provided by using OCL expres-
sions which impose on the model. Thus, the pro-
posed metamodel conforms to the UML standard.

Future work will be focused on using the
proposed metamodel. The metamodel defines
the syntax of the visual language. However, it is
not only a visual syntax presentation. The meta-
model can be used for developing tools for vali-
dation of the model syntax. Validated models, se-
rialized to XMI, can be transformed into a custom
XTT representation. Then, such models can be
interpret by using Prolog-based engine [10] and
a prototype implementation of the system can be
generated and run.

Moreover, the application of the metamodel
can be wider when having different models which
conform to the same metamodel. In this case,
the metamodel can be used for translation from
one model to another.

Currently, UML-based model of XTT and its
metamodel has been proposed. The research in
the field of metamodeling should be considered
and possible metamodel applications should be
investigated.

Acknowledgements The paper is supported by
the HeKatE Project funded from 2007–2009 re-
sources for science as a research project. The pa-
per is carried out within the AGH UST Project
No. 10.10.120.105.

References.
[1] C. Atkinson and T. Kühne. Model-driven de-

velopment: A metamodeling foundation. IEEE
SOFTWARE, 20:36–41, September/October
2003.

[2] D. S. Frankel. Model Driven Architecture. Ap-
plying MDA to Enterprise Computing. Wiley
Publishing, Indianapolis, 2003.

[3] L. Fuentes and A. Vallecillo. An introduction to
uml profiles. UPGRADE, 2:6–13, 2004.

[4] B. Henderson-Sellers, C. Atkinson, T. Kühne,
and C. Gonzalez-Perez. Understanding meta-
modelling. Technical Report ER2003, October
2003.

[5] J. P. Ignizio. An Introduction To Model Driven
Architecture. Applying MDA to Enterprise Com-
puting. McGraw-Hill, 1991.

[6] A. Kleppe, J. Warmer, and W. Bast. MDA Ex-
plained: The Model Driven Architecture: Prac-
tice and Promise. Addison Wesley, 2003.

[7] G. J. Nalepa and A. Ligęza. A graphical tab-
ular model for rule-based logic programming
and verification. Systems Science, 31(2):89–95,
2005.

[8] Grzegorz J. Nalepa. Xtt rules design and im-
plementation with object-oriented methods. In
H. Chad Lane and Hans W. Guesgen, editors,
FLAIRS-22: Proceedings of the twenty-second
international Florida Artificial Intelligence Re-
search Society conference: 19–21 May 2009,
Sanibel Island, Florida, USA, 2009.

[9] Grzegorz J. Nalepa and Krzysztof Kluza. Uml
representation proposal for xtt rule design
method. In Grzegorz J. Nalepa and Joachim
Baumeister, editors, 4th Workshop on Knowl-
edge Engineering and Software Engineering
(KESE2008) at the 32nd German conference
on Artificial Intelligence: September 23, 2008,
Kaiserslautern, Germany, pages 31–42, Kaiser-
slautern, Germany, 2008.

[10] Grzegorz J. Nalepa, Antoni Ligęza, Krzysztof
Kaczor, and Weronika T. Furmańska. Hekate
rule runtime and design framework. In
Gerd Wagner Adrian Giurca, Grzegorz
J. Nalepa, editor, Proceedings of the 3rd
East European Workshop on Rule-Based Ap-
plications (RuleApps 2009) Cottbus, Germany,
September 21, 2009, pages 21–30, Cottbus,
Germany, 2009.

[11] Grzegorz J. Nalepa and Igor Wojnicki. Towards
formalization of ard+ conceptual design and re-
finement method. In FLAIRS-21: Proceedings of
the twenty-first international Florida Artificial
Intelligence Research Society conference: 15–17
may 2008, Coconut Grove, Florida, USA, pages
353–358, Menlo Park, California, 2008. AAAI
Press.

[12] Object Management Group. OMG: MDA Guide
version 1.0.1, 2003.

[13] Object Management Group. OMG: Meta Object
Facility (MOF) version 2.0, Core Specification,
2006.

[14] Object Management Group. OMG: Object
Constraint Language version 2.0. Specification,
2006.

[15] Object Management Group. OMG: Unified
Modeling Language (OMG UML) version 2.2.
Superstructure, 2009.

[16] I. Sommerville. Software Engineering. 7th edn.
International Computer Science. Pearson Edu-
cation Limited, 2004.

[17] J. P. van Gigch. System Design Modeling and
Metamodeling. Plenum Press, New York, 1991.

